CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki



Administration

 The exam is Wednesday Aug 17th, 7 to 10.

» Office hours next week will be Monday, instead of
Tuesday.

» Autotesting results for A2 have been uploaded to
Markus.

* | don't know if you guys can see them, let me know
iIf you can't, and I'll also e-mail them to your cdf
accounts.

* They should be accessible from the screen where
you can see your source code. You may need to
load them.

July 21 2011



Administration

» Clarifications to assignment 3 posted on the
discussion board.

e Office hours tomorrow will be 12-2 rather than
2-4.

July 21 2011



Storing Data

e Often we want to store data between runs of a
program.

* One way to do that is to write it to a file and
then load the file.

* This involves a lot of work.
* The file returns everything as a string.

* S0 you need write code to cast everything to a
string.

 And more code to take the file and recreate the data
that you've lost.

July 21 2011



Storing Data

* This is a large bit of extra code to write.

* Also the type of code that can take a long time
to debug.

* To avoid this, python has a built in module for
storing data.

* |t is called Pickle. It allows you to 'pickle' your
data to store it in between runs of the program.

e Takes only a single line of code to store and
load objects.

July 21 2011



Using Pickle

* First we import cpickle.

» cpickle is a faster version of pickle.

 Then, we a need a file that we'll be either reading from or
writing to.

 To store an object we use
cpi ckl e. dunp(obj ect _nane, file nane)

* To get an object back we use
obj ect nanme = cpickle.load(file name)

July 21 2011



Interacting with a program.

» So far we've had very little interaction with
programs.

* Really only raw_input statements.

* Mostly to modify the way a program has been run,
we've modifed the parameters we pass it.

* And certainly we've never seen any for the user
to decide they want the program to do anything.

* S0 really all we have real control over is starting
programs.

July 21 2011



User Interfaces

» Uls are how a user can interact with a program.

e raw input is an example of a command line user
interfact (clui).

» \We can also pass arguments to a program at
the command line.

« Todothiswel nport sys

 The arguments are stored in a list sys. ar gv
* The first element of the list is always the filename

July 21 2011



Break, the first.

July 21 2011



User Interfaces

 CLUI (command line user interfaces) used to be
quite common.

* Due in part to the low availability of processing
power.

* But they haven't been common in 30 years.

* That's why one has windows instead of dos, or
why os X doesn't load from the terminal.

 But now we interact with the mouse and on the
screen.

July 21 2011



Graphical User Interfaces

 Now GUIs are accepted way of doing things.

* We're going to be covering a very basic GUI
called easyGui.

* It's not very pretty, but is useful for teaching.

 The books covers a more powerful one called
Tkinter.

» easygui does not come built in with python.

» get it at: http://easygui.sourceforge.net/

July 21 2011



GUIs

» GUIs are built out of widgets.
* 'window gadget'

* Very roughly, there are widgets that display
information for the user, and widgets that gather
information from the user.

* In easygui we'll be dealing with single widgets
at a time.

» But complicated GUIs are built out of lots of
widgets.

July 21 2011



Display widgets

* To display things in easygui we will use
nsgbox.

» use help(easygui.msgbox) to get all
parameters.

* The parameters are optional.

* The first two are the most important ones,
referring to the message, and title of the
window.

July 21 2011



Input widgets.

* Here we have a bit more types of widget to play
with.

 WWe can have inputs where the user clicks a
button.

 \We can have inputs where the user chooses
from a list.

* \We can have inputs where the user enters
some text.

July 21 2011



Button widgets.

 Two main types, buttonbox and indexbox.

* buttonbox returns the string of the button that was
clicked.

* Indexbox returns the index of the button that was
clicked.

* The first parameter is the message, the second
Is the title, and the third is the list or tuple of
choices.

» use help(easygui.buttonbox) to get the full list of
possible parameters.

July 21 2011



List Widgets.

e Here we have choicebox.

* The parameters are the same as for buttonbox
and indexbox.

* The difference is that the they are displayed
vertically in a list, which makes it easier to fit

long lists of choices.

July 21 2011



Input Widgets.

* We have entrybox and integerbox.

e enterbox allows the user to input text,
intergerbox allows the user to input integers.

* Both allow you to set default text.
* Integerbox allows you to set bounds.

* They return the value of the entry field.

July 21 2011



Break, the second.

July 21 2011



Building programs with easygui

* First decide on the actions you want to provide.

* Then build a widget that allows the user to
choose the action.

* For each action, design a function that performs
that action.

* Design means write the parameters and docstring.
 Map each choice to each action.

* Finally, fill in the functions, noting that they may
all need their own widgets.

July 21 2011



Why is easygui easy?

 Each widget is its own window.

* This makes easygui great for becoming comfortable
with individual widgets.

* But you don't worry about the layout at all.

* The outputs for all the widgets are predefined
and rather simple.

» So handling user actions is much simpler.

* Also, since there's only one window at a time, it's a
lot easier to design programs.

July 21 2011



Event-Driven programming.

* Even in our simple guis, the program doesn't do
anything until the user clicks somewnhere.

* Mouse clicks and keyboard presses are known
as events.

* Because the program waits on them to do
anything, this is an example of event-driven
programming.

» Contrast with our earlier programs, that just run
code until we reach the end of a file.

July 21 2011



Event-Driven Programming.

 Most programs that you leave running are event driven.

 More complicated guis have you write your own code that
responds to events.

e Generally when making guis we think of three main things:
* Views: What we show to the user.

 Models: How we keep the data.

* Controllers: What reacts to user actions and updates
the models. This often then triggers an update in the
view.

July 21 2011



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

