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Administration

 The exam is Wednesday Aug 17th, 7 to 10.

» Office hours next week will be Monday, instead of
Tuesday.

» Autotesting results for A2 have been uploaded to
Markus.

* | don't know if you guys can see them, let me know
iIf you can't, and I'll also e-mail them to your cdf
accounts.

* They should be accessible from the screen where
you can see your source code. You may need to
load them.
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Administration

» Clarifications to assignment 3 posted on the
discussion board.

e Office hours tomorrow will be 12-2 rather than
2-4.
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Storing Data

e Often we want to store data between runs of a
program.

* One way to do that is to write it to a file and
then load the file.

* This involves a lot of work.
* The file returns everything as a string.

* S0 you need write code to cast everything to a
string.

 And more code to take the file and recreate the data
that you've lost.
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Storing Data

* This is a large bit of extra code to write.

* Also the type of code that can take a long time
to debug.

* To avoid this, python has a built in module for
storing data.

* |t is called Pickle. It allows you to 'pickle' your
data to store it in between runs of the program.

e Takes only a single line of code to store and
load objects.
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Using Pickle

* First we import cpickle.

» cpickle is a faster version of pickle.

 Then, we a need a file that we'll be either reading from or
writing to.

 To store an object we use
cpi ckl e. dunp(obj ect _nane, file nane)

* To get an object back we use
obj ect nanme = cpickle.load(file name)
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Interacting with a program.

» So far we've had very little interaction with
programs.

* Really only raw_input statements.

* Mostly to modify the way a program has been run,
we've modifed the parameters we pass it.

* And certainly we've never seen any for the user
to decide they want the program to do anything.

* S0 really all we have real control over is starting
programs.
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User Interfaces

» Uls are how a user can interact with a program.

e raw input is an example of a command line user
interfact (clui).

» \We can also pass arguments to a program at
the command line.

« Todothiswel nport sys

 The arguments are stored in a list sys. ar gv
* The first element of the list is always the filename
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Break, the first.
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User Interfaces

 CLUI (command line user interfaces) used to be
quite common.

* Due in part to the low availability of processing
power.

* But they haven't been common in 30 years.

* That's why one has windows instead of dos, or
why os X doesn't load from the terminal.

 But now we interact with the mouse and on the
screen.
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Graphical User Interfaces

 Now GUIs are accepted way of doing things.

* We're going to be covering a very basic GUI
called easyGui.

* It's not very pretty, but is useful for teaching.

 The books covers a more powerful one called
Tkinter.

» easygui does not come built in with python.

» get it at: http://easygui.sourceforge.net/
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GUIs

» GUIs are built out of widgets.
* 'window gadget'

* Very roughly, there are widgets that display
information for the user, and widgets that gather
information from the user.

* In easygui we'll be dealing with single widgets
at a time.

» But complicated GUIs are built out of lots of
widgets.
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Display widgets

* To display things in easygui we will use
nsgbox.

» use help(easygui.msgbox) to get all
parameters.

* The parameters are optional.

* The first two are the most important ones,
referring to the message, and title of the
window.
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Input widgets.

* Here we have a bit more types of widget to play
with.

 WWe can have inputs where the user clicks a
button.

 \We can have inputs where the user chooses
from a list.

* \We can have inputs where the user enters
some text.
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Button widgets.

 Two main types, buttonbox and indexbox.

* buttonbox returns the string of the button that was
clicked.

* Indexbox returns the index of the button that was
clicked.

* The first parameter is the message, the second
Is the title, and the third is the list or tuple of
choices.

» use help(easygui.buttonbox) to get the full list of
possible parameters.
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List Widgets.

e Here we have choicebox.

* The parameters are the same as for buttonbox
and indexbox.

* The difference is that the they are displayed
vertically in a list, which makes it easier to fit

long lists of choices.
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Input Widgets.

* We have entrybox and integerbox.

e enterbox allows the user to input text,
intergerbox allows the user to input integers.

* Both allow you to set default text.
* Integerbox allows you to set bounds.

* They return the value of the entry field.
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Break, the second.
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Building programs with easygui

* First decide on the actions you want to provide.

* Then build a widget that allows the user to
choose the action.

* For each action, design a function that performs
that action.

* Design means write the parameters and docstring.
 Map each choice to each action.

* Finally, fill in the functions, noting that they may
all need their own widgets.
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Why is easygui easy?

 Each widget is its own window.

* This makes easygui great for becoming comfortable
with individual widgets.

* But you don't worry about the layout at all.

* The outputs for all the widgets are predefined
and rather simple.

» So handling user actions is much simpler.

* Also, since there's only one window at a time, it's a
lot easier to design programs.
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Event-Driven programming.

* Even in our simple guis, the program doesn't do
anything until the user clicks somewnhere.

* Mouse clicks and keyboard presses are known
as events.

* Because the program waits on them to do
anything, this is an example of event-driven
programming.

» Contrast with our earlier programs, that just run
code until we reach the end of a file.

July 21 2011



Event-Driven Programming.

 Most programs that you leave running are event driven.

 More complicated guis have you write your own code that
responds to events.

e Generally when making guis we think of three main things:
* Views: What we show to the user.

 Models: How we keep the data.

* Controllers: What reacts to user actions and updates
the models. This often then triggers an update in the
view.
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