
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

July 21 2011

Administration

● The exam is Wednesday Aug 17th, 7 to 10.

● Office hours next week will be Monday, instead of
Tuesday.

● Autotesting results for A2 have been uploaded to
Markus.

● I don't know if you guys can see them, let me know
if you can't, and I'll also e-mail them to your cdf
accounts.

● They should be accessible from the screen where
you can see your source code. You may need to
load them.

July 21 2011

Administration

● Clarifications to assignment 3 posted on the
discussion board.

● Office hours tomorrow will be 12-2 rather than
2-4.

July 21 2011

Storing Data

● Often we want to store data between runs of a
program.

● One way to do that is to write it to a file and
then load the file.

● This involves a lot of work.
● The file returns everything as a string.

● So you need write code to cast everything to a
string.

● And more code to take the file and recreate the data
that you've lost.

July 21 2011

Storing Data

● This is a large bit of extra code to write.
● Also the type of code that can take a long time

to debug.
● To avoid this, python has a built in module for

storing data.
● It is called Pickle. It allows you to 'pickle' your

data to store it in between runs of the program.
● Takes only a single line of code to store and

load objects.

July 21 2011

Using Pickle

● First we import cpickle.

● cpickle is a faster version of pickle.
● Then, we a need a file that we'll be either reading from or

writing to.

● To store an object we use

 cpickle.dump(object_name, file_name)

● To get an object back we use

 object_name = cpickle.load(file_name)

July 21 2011

Interacting with a program.

● So far we've had very little interaction with
programs.
● Really only raw_input statements.
● Mostly to modify the way a program has been run,

we've modifed the parameters we pass it.

● And certainly we've never seen any for the user
to decide they want the program to do anything.

● So really all we have real control over is starting
programs.

July 21 2011

User Interfaces

● UIs are how a user can interact with a program.
● raw input is an example of a command line user

interfact (clui).
● We can also pass arguments to a program at

the command line.
● To do this we import sys

● The arguments are stored in a list sys.argv
● The first element of the list is always the filename

July 21 2011

Break, the first.

July 21 2011

User Interfaces

● CLUI (command line user interfaces) used to be
quite common.

● Due in part to the low availability of processing
power.

● But they haven't been common in 30 years.
● That's why one has windows instead of dos, or

why os X doesn't load from the terminal.
● But now we interact with the mouse and on the

screen.

July 21 2011

Graphical User Interfaces

● Now GUIs are accepted way of doing things.
● We're going to be covering a very basic GUI

called easyGui.
● It's not very pretty, but is useful for teaching.
● The books covers a more powerful one called

Tkinter.
● easygui does not come built in with python.

● get it at: http://easygui.sourceforge.net/

July 21 2011

GUIs

● GUIs are built out of widgets.
● 'window gadget'

● Very roughly, there are widgets that display
information for the user, and widgets that gather
information from the user.

● In easygui we'll be dealing with single widgets
at a time.

● But complicated GUIs are built out of lots of
widgets.

July 21 2011

Display widgets

● To display things in easygui we will use
msgbox.

● use help(easygui.msgbox) to get all
parameters.

● The parameters are optional.
● The first two are the most important ones,

referring to the message, and title of the
window.

July 21 2011

Input widgets.

● Here we have a bit more types of widget to play
with.

● We can have inputs where the user clicks a
button.

● We can have inputs where the user chooses
from a list.

● We can have inputs where the user enters
some text.

July 21 2011

Button widgets.

● Two main types, buttonbox and indexbox.
● buttonbox returns the string of the button that was

clicked.
● indexbox returns the index of the button that was

clicked.

● The first parameter is the message, the second
is the title, and the third is the list or tuple of
choices.

● use help(easygui.buttonbox) to get the full list of
possible parameters.

July 21 2011

List Widgets.

● Here we have choicebox.
● The parameters are the same as for buttonbox

and indexbox.
● The difference is that the they are displayed

vertically in a list, which makes it easier to fit
long lists of choices.

July 21 2011

Input Widgets.

● We have entrybox and integerbox.
● enterbox allows the user to input text,

intergerbox allows the user to input integers.
● Both allow you to set default text.
● Integerbox allows you to set bounds.

● They return the value of the entry field.

July 21 2011

Break, the second.

July 21 2011

Building programs with easygui

● First decide on the actions you want to provide.
● Then build a widget that allows the user to

choose the action.
● For each action, design a function that performs

that action.
● Design means write the parameters and docstring.

● Map each choice to each action.
● Finally, fill in the functions, noting that they may

all need their own widgets.

July 21 2011

Why is easygui easy?

● Each widget is its own window.
● This makes easygui great for becoming comfortable

with individual widgets.
● But you don't worry about the layout at all.

● The outputs for all the widgets are predefined
and rather simple.
● So handling user actions is much simpler.
● Also, since there's only one window at a time, it's a

lot easier to design programs.

July 21 2011

Event-Driven programming.

● Even in our simple guis, the program doesn't do
anything until the user clicks somewhere.

● Mouse clicks and keyboard presses are known
as events.

● Because the program waits on them to do
anything, this is an example of event-driven
programming.

● Contrast with our earlier programs, that just run
code until we reach the end of a file.

July 21 2011

Event-Driven Programming.

● Most programs that you leave running are event driven.

● More complicated guis have you write your own code that
responds to events.

● Generally when making guis we think of three main things:

● Views: What we show to the user.
● Models: How we keep the data.
● Controllers: What reacts to user actions and updates

the models. This often then triggers an update in the
view.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

